C

W LTV )Y
ao S



topics

* Interface
e Abstract class
e Sealed class



* real power of inheritance comes from inheriting from an interface.



interface

* interface
* does not contain any code or data
* just specifies the methods and properties for the heirs

* By using an interface, you can completely separate the names and
signatures of the methods of a class from the method’s
implementation.



Abstract class

* similar to interfaces, however, abstract classes can contain code and
data.

* Can specify certain methods of an abstract class as virtual

* so that a class that inherits from the abstract class can optionally provide its
own implementation of these methods



Understanding interfaces

* We want to define a new class in which you can store collections of
objects, a bit like you would use an array.

* RetrievelnOrder
e ordinary array !
* retrieve objects in a sequence (depends on the type)?



int CompareTo(object obj)
{
// return O if this instance is equal to obj
// return < 0 if this instance is less than obj
// return > 0 if this instance is greater than obj



Defining an interface

interface lcomparable

{
int CompareTo(object obj);

Keyword interface + no access modifier + no implementation + no data filed



e a struct can implement an interface



Interface example

interface ILandBound

{
int NumberOfLegs();

}

class Horse : ILandBound

{

public int NumberOfLegs()
{return 4;}



inherit from another class and implement an
interface at the same time

interface ILandBound

{..}

class Mammal

{..}

class Horse : Mammal , ILandBound

{..}



* The base class is always named first, followed by a comma, followed
by the interface

e A class can inherit from several interfaces

* An interface, InterfaceA, can inherit from another interface,
InterfaceB

 any class that implements InterfaceA must provide implementations of all the
methods in InterfaceB and InterfaceA.



Referencing a class through its interface

Horse myHorse = new Horse(...); interface ILandBound

ILandBound iMyHorse = myHorse; // legal {.d

class Mammal

{..}

class Horse

: Mammal , ILandBound

{..}



* The technique of referencing an object through an interface is useful
because you can use it to define methods that can take different
types as parameters, as long as the types implement a specified
interface

int FindLandSpeed(lILandBound landBoundMammal)
{...}

if (myHorse is ILandBound)
{ ILandBound iLandBoundAnimal = myHorse;}



Working with multiple interfaces

* A class can have at most one base class, but it is allowed to
implement an unlimited number of interfaces. A class must
implement all the methods declared by these interfaces.

class Horse : Mammal, ILandBound, Igrazable

{



Explicitly implementing an interface

class Horse : ILandBound, ljourney

{
int ILandBound.NumberOfLegs()
{ return 4; }
int Journey.NumberOfLegs()
{ return 3; }
}

The methods are private!



How to use private method

Horse horse = new Horse();

lJourney journeyHorse = horse;

int legsinJourney = journeyHorse.NumberOfLegs();
ILandBound landBoundHorse = horse;

int legsOnHorse = landBoundHorse.NumberOfLegs();



Abstract classes

* parts of the derived classes to share common implementations!
* Duplication in code is a warning sign



class Horse : Mammal, ILandBound, Igrazable

{
void IGrazable.ChewGrass()
{
Console.WriteLine("Chewing grass");
// code for chewing grass
}
}
class Sheep : Mammal, ILandBound, Igrazable
{
void IGrazable.ChewGrass()
{
Console.WriteLine("Chewing grass");
// same code as horse for chewing grass
}



One solution: new class

class GrazingMammal : Mammal, Igrazable

{

void IGrazable.ChewGrass()

{
// common code for chewing grass
Console.WriteLine("Chewing grass");
1}
class Horse : GrazingMammal, ILandBound

{...}

class Sheep : GrazingMammal, ILandBound

{...}



One solution: new class

one thing is not quite right : instances of the GrazingMammal class !
The GrazingMammal class is an abstraction of common functionality rather than an entity in its own right.



* To declare that creating instances of a class is not allowed, you can
declare that the class is abstract by using the abstract keyword,

abstract class GrazingMammal : Mammal, Igrazable

{..}

GrazingMammal myGrazingMammal = new GrazingMammal(...); // illegal



Abstract methods

e An abstract class can contain abstract methods
e A derived class must override this method
* An abstract method cannot be private

* An abstract method is useful if it does not make sense to provide a
default implementation in the abstract class but you want to ensure

that an inheriting class provides its own implementation of that
method



Sealed classes

e you can use the sealed keyword to prevent a class from being used as
a base class if you decide that it should not be

* If any class attempts to use Horse as a base class, a compile-time
error will be generated
* a sealed class cannot declare any virtual methods
* an abstract class cannot be sealed



Sealed methods

 use the sealed keyword to declare that an individual method (in an
unsealed class )

* means that a derived class cannot override this method

* You can seal only a method declared with the override keyword



* An interface introduces the name of a method.

* A virtual method is the first implementation of a method

* An override method is another implementation of a method.

* A sealed method is the last implementation of a method



